
Journal of Sound and <ibration (1999) 226(4), 739}753
Article No. jsvi.1999.2314, available online at http://www.idealibrary.com on
SEGMENTED SENSORS AND ACTUATORS FOR THICK
PLATES AND SHELLS PART I: ANALYSIS USING FSDT

G. P. DUBE, P. C. DUMIR AND C. BALAJI KUMAR

Applied Mechanics Department, I.I.¹. Delhi, New Delhi 110016, India

(Received 16 June 1998, and in ,nal form 12 April 1999)

This paper presents modal sensitivity factors, actuation factors and controlled
damping ratio for segmented distributed piezoelectric sensor and actuator layers
laminated on simply supported thick rectangular plates and circular cylindrical
shells made of cross-ply composite laminate. A Flugge-type "rst order shear
deformation theory (FSDT) has been developed including rotary inertia of the
elastic plies and inertia, sti!ness and piezoelectric e!ects (direct and converse) of the
piezoelectric layers. Plates and shells with any cross-ply lamination scheme
(symmetric/unsymmetric) are considered with the piezoelectric sensor and actuator
layers rectangularly segmented. The Navier-type solution is obtained for the case of
velocity feedback using modal "ltering. Analytical expressions for modal
membrane and bending sensitivity factors, membrane and bending actuation
factors and controlled damping ratio are developed for cylindrical shells using
FSDT and classical lamination theory. The contribution of the in-plane
displacement components is included. The results for plates are obtained as
a particular case of the results for circular cylindrical shells.
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1. INTRODUCTION

Composite plates and shells with piezoelectric layers for sensing and actuation are
being used in smart structures where shape control is important [1}3]. By proper
placement, distributed sensors can be used to sense membrane response or bending
response or both. The sensing and actuation e!ects of distributed piezoelectric
sensors and actuators depend on their shape, thickness, material properties,
placement, spatial shaping and spatial distribution. There are observability and
controllability de"ciencies in monitoring and control of plates and shells when
a single piece fully distributed piezoelectric sensor/actuator is used [3]. Spatial
shaping of distributed sensors and actuators, for example by segmenting them into
a number of smaller pieces, can improve the controllability and observability. The
e!ectiveness of piezoelectric distributed sensors and actuators, segmented into
rectangular patches, laminated on composite simply supported rectangular thin
plates and circular cylindrical thin shell panels has been investigated by Tzou and
Fu [4,5] and Tzou et al. [6,7]. Classical lamination theory (CLT) has been applied

neglecting shear and rotary inertia.
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The e!ect of transverse shear is signi"cant for composite thin plates and shells
with "bre-reinforced composite elastic substrate, even for lower modes due to the
small ratio of the transverse shear modulus to the longitudinal Young's modulus.
Even for the case of isotropic elastic core, the shear deformation and rotary inertia
e!ects are signi"cant for higher modes. This work presents modal sensitivity and
actuation factors and controlled modal damping ratio for rectangularly segmented
piezoelectric sensor and actuator layers laminated on simply supported rectangular
plates and circular cylindrical shells made of cross-ply composite laminate using
a "rst order shear deformation theory (FSDT). The FSDT has been developed for
cylindrical shells based on Flugge's approximations. The rotary inertia of the elastic
plies and inertia, sti!ness and piezoelectric e!ects (direct and converse) of the
piezoelectric layers are included. Analytical expressions for modal membrane and
bending sensitivity factors, membrane and bending actuation factors and
controlled damping ratio are developed for the case of velocity feedback using
Navier-type solution including the contribution of the in-plane displacement
components. The results for plates are obtained as a particular case of the results
for circular cylindrical shells. It has been observed from the numerical results that
the modal sensitivity and actuation factors are overpredicted by CLT in
comparision to FSDT. Hence the ampli"cation factor required for feedback control
based on CLT needs to be suitably modi"ed.

2. GOVERNING EQUATIONS FOR FSDT

Consider a "nite, simply supported, composite circular cylindrical shell panel of
span angle t (Figure 1) made up of a cross-ply laminated composite elastic
substrate with surface bonded piezoelectric layers of orthorhombic crystal class
mm2 with poling in the z direction. FSDT is developed based on Flugge's shell
theory approximations. Let u0, v0, w0 be the displacements of the mid-surface in the
cylindrical co-ordinates x, h, z, and t

1
, t

2
be the rotations of its normal. The

displacements u, v, w, in FSDT are approximated as

u (x, h, z, t )"u0 (x, h, t )#zt
1
(x, h, t), v(x, h, z, t)"v0 (x, h, t)#zt

2
(x, h, t),

w(x, h, z, t)"w0 (x, h, t). (1)

The strain}displacement relations yield the strains as
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For piezoelectric layers, stress p, strain e, electric "eld E and electric displacement
D are related by

e"Sp#dTE, D"ee#gE, (3)



Figure 1. Geometry of composite shell and plate.
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where the superscript T denotes matrix transpose and S, d, e, g are the matrices of
elastic compliance, piezoelectric strain constants, piezoelectric stress constants and
permittivities with
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Let E
z
"Ed

z
#Ea

z
, where Ed

z
, and Ea

z
are the electric "elds due to the direct

piezoelectric e!ect and due to applied actuation potentials. In the constitutive
equation for D

z
, obtained from equation (3),
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, (5)

the bracketted expression is equated to zero as its value is very small compared to
the last term [6]. Hence
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Assuming p
z
K0, neglecting Ed

x
, Edh compared to Ea

x
, Eah [6] and using equation (6)

in equation (3) yield
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where >
i
are Young's moduli, l

ij
the Poisson ratios and g

ij
the shear moduli.

For the mid-surface, the six force (N
x
, Nh , N

xh , Nhx , Q
x
, Qh ) and four moment

(M
x
, Mh , Mxh , Mhx) resultants per unit length, and the distributed load consisting of

three forces (p
x
, ph , pz ) and two moments (m

x
, mh) per unit area, are de"ned in terms

of stresses by
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Using expressions (2) and (7) in equation (8), approximating (1#z/R)~1K
1!z/R#z2/R2, and retaining terms upto order z2/R2 in the integrands yield the
following relations between the resultants and displacements:
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. As in reference [8], the shear correction factors are
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yield the following equations of motion in terms of displacements, using relations
(10):
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The boundary conditions at the simply supported ends are taken as
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The Navier-type solutions of equations (14) satisfying equations (17) are
expanded as
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with mN "mn/a and nN "nn/t. Similar expansions are used for Qa
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where M, K are the inertia and sti!ness matrices and;, H are the displacement and
load vectors for the (m, n)th Fourier component. The non-zero elements of the 5]5
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For undamped, free, synchronous vibrations at natural frequency u, with
;"X cosut, equation (19) yields KX"u2MX. The "ve natural frequencies and
mode shapes for FSDT correspond to two in-plane, two thickness-shear and one
bending mode of vibration. Let Xb be the bending mode, with natural frequency u,
normalized with respect to the inertia matrix M: XbTMXb"1. For this (m, n)th
bending mode of vibration, let ; (t)"f (t)Xb. The governing equation of motion
for this mode can be derived from equation (19) as
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where F"XbTH, and passive damping has been included in terms of the modal
damping ratio m.

3. MODAL SENSITIVITY AND ACTUATION FACTORS
FOR SHELLS USING FSDT

Consider that the piezoelectric sensor layer on the inside and the piezoelectric
actuator layer on the outside are divided into equal patches with p segments in the
x-direction and q segments in the h direction (Figure 1). Let their thicknesses be h
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actuator layers with the elastic substrate are earthed.
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with dA"dxR
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dh, where R
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where Sm
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, Sb
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are the membrane and bending modal sensitivities for the (m, n)th
bending mode. Sm

mn
, Sb

mn
are independent of time and location of the sensor patch.

The total modal sensitivity St
mn

due to the direct elastic-piezoelectric e!ect for this
mode is given by St

mn
"Sm

mn
#Sb

mn
. The term f (t) represents the time e!ect and

(cosmN x
l1
!cosmN x

l2
) (cos nN h

l1
!cos nN h

l2
)aR

1
t/As

l
represents the spatial e!ect of the

area and location of the electrode patch. The sensor signal depends on the modal
sensitivity, modal participation factor and spatial distribution. Hence, the total
modal signal for the (m, n)th bending mode is obtained as /s(b)

mn
"+pq

l/1
/s(b)

mnl
.

Consider the case of damped free vibration, i.e., p
x
"p

y
"p

z
"0, m

x
"m

y
"0.

Let a constant actuation potential /l be applied to an electrode over the actuator
patch l of area Aa

l
extending from x

l1
to x

l2
h
l1

to h
l2
. The potential /a is

approximated to vary linearly through the thickness of the actuator. Hence, for
z
a
!h

a
/2)z)z

a
#h

a
/2,

/a"[(z!z
a
#h

a
/2)/h

a
]/l[u (x!x

l1
)!u(x!x

l2
)][u(h!h

l1
)!u(h!h

l2
)],

Ea
x
"![(z!z

a
#h

a
/2)/h

a
]/l[d (x!x

l1
)!d(x!x

l2
)][u(h!h

l1
)!u(h!h

l2
)],

Eah"![(z!z
a
#h

a
/2)/h

a
]/l[u(x!x

l1
)!u (x!x

l2
)]

][d(h!h
l1
)!d(h!h

l2
)]/(R#z),

Ea
z
"/l[u (x!x

l1
)!u(x!x

l2
)][u (h!h

l1
)!u(h!h

l2
)]/h

a
. (26)

where u (x) is the unit step function and d(x) is the Dirac-delta function. Using
equations (26), equations (11), (12) and (18) yield the following Fourier components
of the force resultants due to actuation

[Na
x
,Nah ]mn"

4
atmN nN

[e
31

(1#z
a
/R), e

32
]/l(cosmN x

l1
!cosmN x

l2
)(cos nN h

l1
!cos nN h

l2
),

[Ma
x
, Mah ]mn

"

4
atmN nN

[e
31

Mz
a
(1#z

a
/R)#h2

a
/12RN , z

a
e
32

]/l(cosmN x
l1
!cos mN x

l2
)

](cos nN h
l1
!cos nN h

l2
),
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Qa
xmn

"!

2
atnN

k
55

h
a
e
15

[1#h
a
/6R#z

a
/R]/l(cos mN x

l1
!cosmN x

l2
)

](cos nN h
l1
!cos nN h

l2
),
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2
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k
44C
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a
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!
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a

6(R#z
a
)2
#
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a

12(R#z
a
)3D e

24
/l(cosmN x

l1
!cosmN x

l2
)

](cosnN h
l1
!cos nN h

l2
). (27)

Using equation (20) for Q and equation (27), the contribution F
l
of the actuator

patch l to the modal load F"XbTH"+pq
l/1

F
l
, for the (m, n)th bending mode, is

given by

F
l
"!At

mn
/l (cosmN x

l1
!cosmN x

l2
) (cos nN h

l1
!cos nN h

l2
) (28)

with
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mn
"Am

mn
#Ab

mn
,

Am
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a
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a
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a
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e
15

(1#h
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a
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/mN D . (29)

At
mn

is the total (m, n)th modal actuation factor which is independent of time and
spatial distribution. It has been divided into the membrane actuation factor Am

mn
and the bending actuation factor Ab

mn
, respectively, representing the membrane and

bending control actions. The modal control force depends on the the spatial
distribution, the modal actuation factor and the voltages applied to the actuator
patches.
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4. MODAL SENSITIVITY AND ACTUATION FACTORS
FOR SHELLS USING CLT

In the classical lamination theory (CLT) of thin shells, we assume that the
transverse shear strains c

zx
"chz"0, i.e., t

1
"!w0

,x
, t

2
"(v0!w0

,h)R and terms
involving o

1
h, o

2
h2 are neglected. The equations of motion for the CLT are

N
x,x

#Nhx,h/R#p
x
"o

0
huK 0, Nh,h/R#N

xh,x#Mh,h/R2#M
xh,x/R#mh/R

#ph"o
0
hvK 0, M

x,xx
#(Mhx#M

xh),xh/R#Mh,hh/R2!Nh/R#m
x,x

#mh,h/R#p
z
"o

0
hwK 0. (30)

Proceeding as in FSDT, these can be expressed in terms of displacements, u0, v0, w0,
as
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11
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66
)v0

,xxh#BM *
22

v0
,hhh/R2!AM
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66
)w0

,xxhh!DM
22

w0
,hhhh/R4#2BM *
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with

P
1
"p

x
#Na

x,x
, P

2
"ph#mh/R#Nah,h/R#Mah,h/R2,

P
3
"p

z
!Nah/R#Mah,hh/R2#Ma

x,xx
#m

x,x
#mh,h/R. (32)

The boundary conditions at the simply supported ends are taken as

at x"0, a: N
x
"0, v0"w0"0, M

x
"0; at h"0, t: u0"w0"0,

Nh"0, Mh"0. (33)

Using the expansions (18), the equations of motion (32) reduce to the discretized
form of equations (19). The non-zero elements of the 3]3 symmetric matrices M,
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K and vectors ;, H for CST are given by
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!nN mh/R]

mn
. (34)

The three natural frequencies and mode shapes for classical theory predominantly
correspond to two in-plane and one bending mode of vibration.

Proceeding as in FSDT, the modal sensitivity and actuation factors are obtained
as
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mn
"h

s
[mN e

31
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a
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5. MODAL SENSITIVITY AND ACTUATION FACTORS FOR PLATES

Consider a simply supported, composite rectangular plate of sides a, b and
thickness h (Figure 1(b)) with the co-ordinates x, y spanning its mid-plane. The
results for composite plates are obtained as particular cases of those for shells using
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FSDT and CLT, by replacing h, t, nN with y/R, b/R, nL R, respectively, where nL "nn/b
and taking the limit as RPR. Thus, we obtain for FSDT

/s(b)
mnl

"f (Sm
mn
#Sb

mn
) (cosmN x

l1
!cosmN x

l2
) (cos nL y
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where
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and for CLT
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(41)

The total modal force due to actuation for the (m, n)th bending mode of plates is
expressed, using FSDT, as
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and
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The actuation factors for the case of CLT are obtained as
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mn
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e
32
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The membrane actuation factor is the same as in FSDT.

6. CLOSED-LOOP VELOCITY FEEDBACK CONTROL

In the closed-loop velocity feedback control, the top piezoelectric layer serves as
an actuator and the bottom one serves as a sensor. These are segmented into the
same rectangular pattern such that each actuator patch has a corresponding sensor
patch. Each sensor signal is processed and fed back to the corresponding collacated
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distributed actuator patch. The output signal of the lth sensor patch is contributed
by the direct piezoelectric e!ect. In the velocity feedback (derivative feedback)
control, the lth actuator voltage is proportional to the derivative of the collocated
sensor signal. Imposing modal "lters to isolate the (m, n)th bending mode signal,
the modal feedback voltage is given by

/
l
"G@/Q s(b)

mnl
, (45)

where G@ is the velocity feedback gain. Let G be the signal ampli"cation factor, i.e.,

G"(amplitude of feedback voltage)/(amplitude of sensing signal voltage).

It follows from equation (45) that the true modal velocity gain factor G@"G/u
where u is the natural frequency in radians per second for that mode. The resultant
modal control force from all actuator patches for the shell is obtained using
equations (23), (34) and (45):
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with
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l2
)2aR

1
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D denotes the spatial e!ect of the segmented actuator. Similarly, for the plate, F(t) is
given by equation (46) with

D"

pq
+
l/1

(cosmN x
l1
!cosmN x

l2
)2(cos nL y

l1
!cos nL y

l2
)2ab/As

l
. (48)

The equation of motion (21) for the (m, n)th bending mode becomes

fG#(2mu#At
mn

St
mn

G@D)fQ#u2f"Fm, (49)

where Fm is the mechanical load for this mode. The increase mc in the modal
damping ratio is given by

mc"At
mn

St
mn

GD/2u2"(Am
mn
#Ab

mn
) (Sm

mn
#Sb

mn
)GD/2u2. (50)

7. CONCLUSIONS

The e!ect of transverse shear is signi"cant for composite thin and thick plates
and shells with "bre-reinforced composite elastic substrate, especially for higher
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modes due to the small ratio of the transverse shear modulus to the in-plane
longitudinal Young's modulus. A Flugge-type "rst order shear deformation theory
(FSDT) has been developed including the rotary inertia of the elastic plies and the
inertia, sti!ness and piezoelectric e!ects (direct and converse) of the piezoelectric
layers. Plates and shells with any cross-ply lamination scheme (symmetric/
unsymmetric) are considered. Analytical expressions for modal membrane and
bending sensitivity factors, membrane and bending actuation factors and
controlled damping ratio are developed for cylindrical shells and plates using
FSDT and classical lamination theory. The contribution of the in-plane
displacement components is included. These results are used in the second part of
this study to illustrate the e!ect of the thickness parameter on the sensitivity factors,
actuation factors, and controlled damping ratio.
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